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also an interesting representation for the moment generating function of the first
passage distribution.
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1. Introduction and Motivation

Let {R, F , P} be a probability space. Suppose that Ft is a filtration of F
and that { W(t), t > 0} is standard Brownian motion adapted to F t .

Let

A - c 2(x)D2 + p(x)D (1.1)
2

be the infinitesimal generator of a diffusion X(t) on [0 , r] satisfying

dX(t) = a(x)dW(t) + p(x)dt,

with a reflecting boundary at 0 and absorption at r <0 o, and where 0 2 (x) > 0
and p(x) are continuously differentiable on [0 , r]

Define the stopping time rr by

,-infs>0 > r}

and the moment generating function 'Fp(x,y) by

Wi(x,y) - E{e' rl I X(O) = x} = Ez [e"].

First Passage Times as Failure Times

Our motivation for studying first passage time distributions is their
relevance to modeling of failure times. Indeed, this paper continues the line of
development initiated in [91, where a stochastic process is used to model system
state, ie, wear-and-tear, and failure occurs when either a traumatic killing event
occurs (killing events happen with rate k(x) in state x), or the system is retired
when wear-and-tear reaches some predefined threshold (ie, a first passage
occurs).

For example, if system state is modeled as Brownian motion with positive
drift, then first passage to a specified threshhold has an inverse Gaussian
distribution. This first passage distribution has been successfully applied to
numerous problems to obtain good fits, (cf Jorgensen [5] ).

A related but parallel line of development is explored in Wenocur 1121
where the killing time distribution of Brownian motion with quadratic
extinction rate is calculated.

Our aim in this paper is to study first passage time distributions, where the
system state process is a general diffusion with reflection at the origin and
absorption at r <0o. That is, the system state evolves as a diffusion, and
failure occurs at the epoch of first passage (or absorption) to level r
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In future work, we intend to explore the practical ramifications of employing
the computational methods suggested here to evaluate interesting first passage
times statistics.

Backward Equation for First Passage Time Distribution

Let tv(x,t) denote the tail of the first passage time distribution, ie,

W(X't) =-PZ{ 7 > t}

The backward differential equation for w(x,t) is

8w(x,t) . aw(x,t) x"')32 (:t
AW+ 02x='wC2 A(x,t) (1.2)

'9 x 2 9

for (x,t) E (0,r) X (0,oo) , with boundary conditions

w(x,) -l1for 0 < x < r , and for all t > 0 w(r,t) -0 and (WOt

For a derivation of this equation and other related quantities see 16, pp 222-
2241.

The Spectral Representation for w(xt)

The following representation for w(x,t) is valid whenever o2(x) and JIx) are

sufficiently smooth:

* ~w(z,1) E L Ck e kkO'(x)(13
k-i

* where ak and Ok are eigenvalues and eigenfunctions, and Ck are generalized
Fourier coefficients, all defined below (This representation is proved in Section
8).

The { Ok , k > 1) are eigenfunctions of A corresponding to the eigenvalues
{crk , k > 1), le,

A k- -Ck Ok,

and

r

C,1  f Ok(X)p(x)dx
0

where p(x) is given by

p(x) - 27r(x)/c2(x) (1.4)
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and 7r(x) is given by

7r(x) = expf 2tt(u)/ 2(u)du (1.5)
0

In general an arbitrary function f E L 2(p) will have a Fourier type
expansion, ie,

00

f 2ckiO
k-I

where equality is interpreted in the L 2(p) sense and

r

Ck f (x )k(x)p(x)dx.
0

Remark: In the sequel it is assumed that A's eigenvalues form a complete set in
L 2(p). The completeness of A's eigenfunctions can be assured by certain
regularity conditions on the infinitesimal parapieters 2 (x) and p(x) . For
example, 2(x) > 0 and the continuity of a2 (x) and t (x) are sufficient
conditions. See [11, chap 11 for more details.

A Generalization ' ° ( * "

This paper i8" primarily concerned' with computing first passage time
statistics. In -M',f& alluded! to in (1.1); a' general reliability model was proposed
in which system failures o~cur when either system wear-and-tear reaches some
maximum permissible level (ie, a first passage occurs) , or when some killing

event happens (such killing events occur wit rate k(x) in state x). Under this
model w(x,t) satisfies tHe-f-blowing equation..

89w(xt) 9w(x,t) 8(x) o (x,t) (,tk(x)w(xt)p(x) + 2 Bw(xt),
C 8t ax 2 ax

with the same boundary conditions as (1.2), and where

Bf(x) = 4-a2(x)f "(x) + j,(x)f '(x) + k(x)f(x).

2

It is possible to solve for w(x,t) and related quantities with methods very
similar to those presented here.

In Section 2, algorithms for approximating w(x,t) are obtained. In
particular, the infinite spectral expansion for w(x,t) is approximated by an n-
term sub-expansion which matches the first n-1 moments. Section 2 concludes
with some remarks about our preliminary computational experience. -
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Proofs validating the spectral expansion and the related approximation
scheme are given in the Appendix, Section 8 of this paper.

) In Sections 3 and 4, methods are given for obtaining the eigenvalues and
first passage moments, necessary for computing approximations to w(x,t) . In
Section 5, computational issues related to calculating the moment generating
function are considered.---

. ,-tions 6 and 7 include theoretical complements about first passage times.
In p .,rLicular, the moment generating function, is shown to possess an interesting
representation having exponential form i(ef -equation (7.1) ).€ This exponential
representation is related to asymptotic expansions used in analyzing
perturbations of certain second-order differential equations. :.

Acknowledgement. I gladly thank A. Lemoine for his unflagging
encouragement while this work was in progress, and for his help in improving
the readability of this paper. I also wish to thank the referee for the prompt
careful review, and helpful comments.

p-
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2. Approximating The First Passage Time Distribution

The preceding discussion might suggest that solving for w(x,t) is fairly
straightforward. Generally, eigenvalues and eigenfunctions are difficult to
obtain. However the problem of approximating w(x,t) can be approached by
the method of moments. One technique is to calculate the first three moments,
and then use the Pearson curve fitting method (cf [101). This method is
computationally feasible, and the Pearson family of curves includes some
important first passage distributions, such as the gamma distribution (cf [1]).
The merits of this approach will be studied in a forthcoming paper.

Given n Eigenvalues And n-I First Passage Moments

A more computationally intensive approach, but one founded on stronger
theoretical grounds, is the following. Suppose that n moments
{Mk(x,r) , 1 < k < n } are known, where Mk(x,r) = EZ[ r J, as well as the
first n elgenvalues {ca ,1 <k <n } Then use a finite sum in place of the
infinite sum in equation (1.3). In particular, approximate w(x,t) by

Wn(,t = E. P)() et/'U
j-1

wherep -- (p , . . pn4) satisfies for 0 < k < n-I

( )k Mk(xr)
E k! where Aj - 11aj (2.1)

Ideally we want wn(X,t) to be a distribution function, ie, wn(X,t)0 0 and
wn(x,S+t) wn(X,t) whenever s > 0. It is not clear that solving (2.1) always
produces such a function. This issue requires further investigation.

Obtaining The Weighting Factors

The weighting factors {p "), 1 < k < n } in (2.1) above are obtained by
solving the following linear system:

1 1 1 1

AI A2 ... An Pi m 1

2 2 2
14 2 .. n M

- (2.2)

-I n-I .. . -n

where M k - Mk(x,r)/k! .

Observe that the matrix { 1 <j <n 0 < k <n} is none other than the
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transpose of the celebrated Vandermonde matrix. Cramer's equation gives the
following formula for pP)

n n

P = L m ,,_(P1,( 2, 4k-.. , _ +,, . ,) / 7 (AI - Ak) (2.3)

jok

where g, are the signed symmetric functions defined as follows:

o(a a2, * •",a,) = 1

and for r >1

,(aaa 2 ' a , ) = a iai, . . .ai,( - ) r

l< il <i2 <' . i,< M

In Section 8 the following convergence theorem is proved:

Theorem

For fixed k

IPP()- Ck 4,) 0 2
n

where CkOk(x) is defined by equation (1.3).

Given 2n-1 Moments Only

Suppose that the first 2n-1 moments have been determined. It is possible to
approximately determine the first n eigenvalues by solving the following system
of equations for pi , Ps(4) 1 < < n.

1 1 ... 1 P M') 1

2n-1 2n-1 ... .. 2n-1
Al 2 An ,n M2 n-1

where Ai > 0.

One approach is to solve for {p (), j=1, ,n } in terms of {,, < k < n}
and { m 0 , m, , • ,m- } as detailed above, and then use the remaining n
constraints to determine the { p 1 < k < n }. This reduced system can then be
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solved using mathematical programming techniques, eg, approximate Newton-
Raphson techniques. The numerical stability and feasibility of this method
merit further study.

Preliminary Computational Experience

Numerical experiments conducted in the C programming language suggest
the following. For small values of t , finite difference methods are more
attractive than finite spectral expansions, but the finite expansion approach is
preferable for large values of t . For relatively small number of terms (less than
6), the method of moments seems to be an attractive method of computing
weights, especially when moments are also to be computed. Because the
Vandermonde system of equations grows increasing unstable with its dimension
(but see Bjork [2]), longer expansions require that the spectral coefficients
should be computed in terms of the eigenvectors and Fourier coefficients.

Small values of t will generally be of interest for first passage distributions
with small means, and conversely. Roughly speaking, if p(x) > 0 or 0(x) is
large, then first passages occur rapidly. But if 1(x) <0 , or g(x) < 0 and o(x)
is small, then first passages occur slowly. These observations should help to
guide the choice of numerical method.

The following example illustrates the efficacy of the method of moments for
computing the spectral weights. Let o(x) =- 1 , p(x) -0 and r - 0, ie, driftless
Brownian motion with a reflecting boundary at 0 and an absorbing boundary at
1. In the following table exact and approximate values for ckqk(0) , k = 1,..., 5
(cf eqn (1.3) with x = 0).

Method of Moments

Coefficient 3 Terms 4 Terms 5 Terms Exact

c 1 1(o) 1.2731 1.2732 1.2732 1.27324

c 202(0) -0.4002 -0.4226 -0.4243 -0.42441

c30 3(o) 0.1272 0.2228 0.2500 0.25464

c 40 4 (0) -0.0735 -0.1452 -0,18189

C505(0) 0.0463 0.14147
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3. Solving For The Eigenvalues

The Eigenvalue Equation

Before the eigenvalue equation can be introduced, the eigenfunction
differential equation must be rewritten in more suitable form. To do so, let
YO(x) satisfy
S02(x)Y"(x) +(x),(x) + OY(x) = 0 (3.1)

Multiplying (3.1) by p(x) gives

7r(x) Y#" (x) + r Y'(x) Y p) + 9P(X) Y(x) (3.2)

where p(x) and 7r(x) are given by (1.4) and (1.5) respectively.

Now suppose that Ye satisfies the boundary conditions

Y, (0) = 0 and YO(O) = 1

Then define c() by

A(9) = YO(r) . (3.3)

The eigenvalues of equation (3.1) are none other than the zeroes of w , see [3,
Chap 81 for further details.

Standardized Eigenvalue Problem

It is also possible to transform (3.1) into more standard form using the
following transformation scheme. Setting

.q z du
z = Z(x) = f reduces (3.1) to0 (02(U)/2)1,2

d2y+-O(z) + OY= 0 (3.4)

" where fl(z) = {(x(z)) - -02 (x(z))}/(02(x(z))/2)1/2
4

f' i- Rud

Putting Y(z) = g(z)y(z) , where g(z) = e gives

+ (0 - q(z))y =0 (3.5)
dz

2

-8-
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_ 1
where q(z) -1/32(z) + -l3'(z), and with boundary conditions y'(O) = 0 and

4 2
y(b)f-iOwith b =--Z(r).

The eigenvalues of (3.5) are the same eigenvalues as those of (3.4) and (3.2)
Moreover the eigenfunctions of (3.5) are easily transformed into those of (3.2)
In particular if 0,,(x) is the eigenvalue corresponding to cen for (3.5) , then
O.() = g(z(x))V.(z(x)).

The following asymptotic results (as n - oo ) are known about the eigenvalues

and eigenfunctions of the standardized problem (ef [11, p. 19]):

a, = (n+1/2)27r2 /b 2 + O(1) ; (3.6)

=(x) = (2/b)'/cos((n+1/2)7rx/b) + 0(-) ; and (3.7)

On'(x) = -(n+1/2)7r(2/b 3 )'/ 2 sin(nIrx/b) + 0(1). (3.8)

9 -9



4. Obtaining First Passage Moments

To solve (2.1) we need to produce the moment-sequence
{Mk(x,r) , 1 < k < n}, three such methods are outlined below.

Complex Integration To Invert Moment Generating Function

Corollary 6.4 shows that IPO(x,r) is an analytic function of 0 around 0, and
so Cauchy's formula implies the identity

M (x,r) 1 V (x,r)
- ef- 9+ do (4.1)n! 27ri 181 f 80 o+

where 00 is sufficiently small.

The integrals in (4.1) may be computed numerically using Gaussian
quadrature to minimize the number of values of 9 to be evaluated, and then
taking the real part. This reduces evaluating the equation to calculating a
small number of values of Pp(x,r) . Evaluating Tfr(x,r) may be done by either
using finite differences to solve the boundary value problem (cf equation (7.6)),
or by using the series method suggested in the differentiation approach, or some
hybrid of series and finite differences. An important virtue of estimates of
Mn(x,r) based on formula (4.1) is that the accuracy of these estimates is
independent of the accuracy of the n-1 smaller moments, unlike the methods
given below.

Recursive Integration

This approach iteratively uses (6.1) to compute successive moments. This is
feasible when the successive moments form a closed family of integrals (compare
example 1), or when only a few moments are desired.

Example 1

Choosing parameters o2(x) = 2(x + a0 ) and p(x) - v where v # 0

gives rise to the iteration:

r tW

M(X) = f n f M.-1 (u)(u + a0 )'-'dudw
(w + 0), 0

An easy induction will show that for v not integer Mn_1 (x) satisfies the
expansion

n )k+M.- 1(x) = c[n,O1 + Z c[n,ki(x+a r d[n,kl(x+a)k-

k-I k-I

where the coefficients are calculated using the iteration:

~-10-
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c n,k] = -ncfn-1,k--1]/(k(k--1)+vk) for k > 1, and

d[n,k] = -nd[n-,--i/((-v+k)(---v+k--l)+u(-v+k)) for k > 2

Finally c[n,O] and d[n,1] are determined by solving the two-dimensional linear
system arising from the boundary conditions M,(r) = 0 and Mn'(0) = 0.

For integer v , closed formulas for all moments are obtainable, but the
calculations will be messier.

Differentiating the Moment Generating Function

Successive moments may be obtained by calculating the 0-derivatives of the
moment generating function Po(x,r) at 9 = 0. This approach is facilitated by
Kent's observation in 18J that P#(x,r) = T$(x)/Tp(r) where To(x) satisfies

1 a (x) T (x) + A(x)TO'(x) + 0O(x) = 0 (4.2)
2

with initial conditions

ST,() =o . TO(O) # o. (4.3)

To solve for the 0-derivatives of VIO(x,r) it suffices to solve for the
derivatives of T(x). We can obtain TO(x) using the series expansion method

* around x=O to solve (4.2) . Under certain regularity conditions, the Taylor
series coefficients may be differentiated with respect to 0 , and the series
summed. This process is illustrated in Example 2 below.

*: Example 2

We indicate how the technique in (4.3) may be applied to Example 1:
I

j-0

Equation (4.2) implies that

a (X) EU 2 lb+2(0)Xj + p(x) A (j+)b+1 (0)X' + 0 Z b,(0)X -- 0
j-O i-0 j-0

Since p(x) = v and 0(x) = 2(x+o 0 ) we deduce that

b _(O) + (t+(j-1)(j-2))b1 (0) + oj(j-)bj(O) = 0 , for J >2, (4.4)

and

-11-



bo(O ) =1 and b1(0)=, forj =0,1.

Repeatedly differentiating (4.4) will give successive iterative formulas for
computing the Taylor series coefficients of YT')(x) . For example, if n = 1

Obi_ 2 (9) + bj 2 (O) + (v + (j-2)(j-1))b11 (0) + O j(j-1)bi'() = 0 ,for j>2

with initial condition given by equation (4.4) with 0 = 0.

If the above iteration diverges, we can always try renormalizing by x and
calculating bj 1 (O)x'. If r is sufficiently small then renormalization will suffice,
otherwise T(x) can be calculated by successively moving out from 0 towards r
as suggested in Section 5 below, and then using the contour integration method
given in the beginning of this section.

-12-



5. Some Remarks About Computing Y&8(x,r)

Computing PO(O,r)

The series expansion method may not permit solving for ;Io(O,r) in a single
step. However, suppose the series converges for some y E (O,r) , ie, it is possible
to compute Vl*(O,y) by the series method. We may use V10(0,y) as a bootstrap
to calculate Pf(y,r) as follows. Observe that '(0,r) =- P(O,y)q'o(y,r) . Thus

# (0,(y) 9ie(y,r)

a9 po(oly) 9

Using this initial condition and Kent's normalization technique, it is possible to
calculate 1F(y,r) starting from y rather than from 0.

Interpolating Tk(x,r) And A Related Boundary Value Problem

Suppose that 410(x,r) and Po(y,r) have been obtained (x < y) , and it is
desired to calculate Tk0(z,r) for z E (x,y) . The multiplicative character of
910(x,r) implies that

9 (z,r) f= 9fi(zy)9k8(yr)

It thus suffices to determine T1o(z,y) . We have VO(x,y) = k/'(x,r)/!T'(y,r) and
#P(y,y) = 1 . Therefore it suffices to find hp(z) ( -- o(z,y)) such that

1 a3 (z)h,"(z) + i(z)h'(z) + Oh(z) = 0 (5.1)

2

with boundary conditions ho(x) =i P6(x,r)/V'(y,r) and ho(y) = 1 . These
boundary conditions uniquely determine hp . To solve for ho , first find 0 and j
satisfying (5.1) , where j'(x) = 1-i and .(x) = i , for i = 0, i . Then set

hf(z) = 9!'(x,y)Cj(z) + Co(z)(1 - 9,0(x,y)Cj(y))/Co(y) .

-13-



8. Theoretical Complements

In this section some of the properties of moments of -r, are examined, but
first some new notation is introduced.

Define M,,(x,y) =E'() for x < y and n > 0, and let

Mn'(Xly) = 99M,(X IY)

Mn"(9Y) = 9X 2

Recursive Equations For Moments Of r,,

The functions Mn(x,y,) jointly satisfy the iterative differential equation (cf
181, p. 203, equation (3.38)) :

1 C2(X)Mn"(X,Y) + ,i~r)M,'(x,y) + nM,-1 (x,y) = 0(.1
2

subject to Mn'(0,y) = 0 and M,,(y,y) = 0.

Lipschitz Conditions For Moments Of r..

Lemma
MWX4y) is a smooth function in x and y jointly ,and there exists a constant
C such that

IMn(X90y)I C Y 2n-1(y -x)n! (6.2)

and

for allx < y

Proof:

Set

8(x) exl- ,2, dC I

and

mWx - 1/102(X)s(x)1

-14-



Rewriting (6.1) as follows

dx ] ~x = -2 nMn (x, y) m W

implies that

Y 11

Mn(xly) = 2jj .J,~()~st~?

By virtue of continuity there exists a constant K such that

1s S 1 Sup Is(x) I K

and

1rn mII<K.

Therefore

zO0

- 2n K 2 IIMn-j.1II(y-x) ! 2K'y'n IIMn- 1II

An easy induction implies that Mn(x,y) is a smooth function in x and y
moreover

and

Taking C - (2K) completes the proof.

(6.4) Corollary

IPO(x~y) < oo whenever PI < CIY- 2 and

WA.X~y 9= nXY (6.4)

0-1n!



Infinitesimal Relations Governing First Passage Moments

Proposition

Define

v.(X, y) -- W.(,Y)

and

*U(x) U,(x,x)

Then M,(x,y) , U,(x,y) , u,,(x) satisfy

Mn(O,Y) = Z Mj(O,x)Mn-(x,Y) (6.5)
j-o

Proof
Conditional on X(O) = 0 the strong Markov property (SMP) implies that
{ r. , a - a , ... ,r -ra, }, where 0 <a, <a 2 < ... <a. <r, form a set of

independent random variables. In particular

M (O,y) E°[r?] f(r 1 + rE -rry

n n ~fJ o[ r.) (T - j~

j-0

which coincides with (6.5) .Using a little algebraic manipulation on (6.5) shows

that

IM (O,y)-Mll(O,X)]/(y-X) E (oX)Mn(XY)/(Y-X) k6.7)

Now letting y--+x in (6.7) yields (6.6) . QED

~-16-
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Comments

Equations (6.5) and (6.6) provide some nice intuition about the way that
first passage times from x to y depend on first passage times from 0 to x.

Equations (6.5) and (6.6) are similar to (6.1) , but may capture better the
dependence of higher moments on lower moments. From a practical point of
view equation (6.1) is certainly preferable for moment calculation. In Section 4,
other methods are proposed for calculating the moments Mn(x,y)

-17-



7. A Representation Result

Theorem

i,$(x,y) =exp{ ' f U. (Z) dz} (7.1)
n-i z

where {un(z) , n> I} satisfy

2 C(X)U(X) + A(x)u 1()U = 1, (7.2)
2

and for n > 2

o2(x)u'(X) + P(X /,.(z) -o-(X) H Uk(x)t.-k(x)• (7.3)
2 -I k-i

Proof
We begin by showing that (7.1) holds for ig(O,r)

Let xI jr/L for 0 < j L. Using the SMP as in the proof of (6.5),

L-141$(0,r) 17 H q(xj,xj+)•
=; I 0 '~p, 1

j-0

Taking logarithms,

i L-i

logl,,(0.r) - E logi,,(x,,x3 +1 )
j-0

Applying the proposition in Section 8 to the above yields

L-1
log gk(o,r) - E' f[V'(x,xj+i) - I + ( P(jx+I-)g k~jx+1)

j-0

Since (x,x) I-1 it follows

)- 1 - 0- (xix, + aL-1) L- 1

where 0 < a < 1 . Also since 4k,(x,y) is a smooth function in x and y jointly

it follows that a PAZ'Y) is uniformly bounded on the region 0 < x < y < r. So
ay

there exists a function h(L) such that h(L)-O(1)

L-1
logVI#gO,r)- , [VI#(xj,x,+)-IJ + h(L)L - '

j-0
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Replacing each ilp(xj,xj+,) in the above by the expression in (6.4), yields

L-I oo O"Mn(xi,+ 1) -+(L )
log ,(0,r) - E n + O(L.

j-0 n-I

Since the summands are positive the order of summation may be permuted to
get

oo L-I O Mn(Xj,Xi+l)+ (
log V'O(O' r ) Ef + 0' n (L-.

n-I j-o

The inner summation can be expressed as a Riemann sum

logo(Or)- L1 Mn(xj,xi+i) 1 + O(L-1). (7.4)
n-I j-0 n! L- L

Equation (6.2) implies that

Mn(xi'+I) <Z C"(x 1 )2 n < Cn

n! L - 1  
-

where C0 Cr2

The Lebesgue dominated convergence theorem (applied to the product space
{1,2,..} X 10,r) endowed with product of the counting measure with the
Lebesgue measure on [O,rl) implies the right side of (7.4) approaches the limit

00 
Olog W0(0,r) E T f,. (z)dz

n-I 0

as L --- 0, or

0 0 r
*0.(O,r) - exp{ -j f u,(z) dz}

~n-n 0

Due to the multiplicative nature of *p(x,y) it is easy to show that

*,,( , ) -exp{ f ,.(Z) o-dz (7.5)
n- I zn

The function Wp(x,y) satisfies the following differential equation (ef 16, pp 203 )

°2( 02  + P(X) ax + 0 (7.6)

[ -10-



subject to 'P = 0 and lk((y,y) =1
ax

Substituting equation (7.5) in (7.6) , shows that the exponent in (7.5) satisfies
the differential equation

g2(.T)[( ,, n ,(x) - o on -o-n ,,[) ,z ,(X)] + o = o
2Un (X)) Un(X)] ,,,) (

Since the above series converge absolutely for 0 sufficiently small, we can
rearrange terms to obtain a single power series in 0 . Because this power series
is zero for 0 sufficiently small, all its coefficients must be zero. Setting the
coefficients of 0 to zero yields equations (7.2) and (7.3)

The initial condition that 8 P(0,y) 0 in (7.6) implies un(0) = 0, where n > 1

This concludes the proof.
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8. Appendix

* Spectral Representations For First Passage Time Distributions

Theorem The right-hand-side of (1.3) is the unique function satisfying (1.2),

jointly continuous in x and t on [O,r] X (O,oo) with aw(xt) absolutelyat

integrable over [O,r] X (N - 1, N) for all N > 1.

Proof:
Suppose that w(x,t) satisfies equation (1.2) and the integrability conditions.
Observe that for fixed t > 0 w(x,t) is a continuous function of x belonging to
L2(p) ( where p is defined by equation (1.4) ). Therefore w(x,t) possesses the

orthogonal expansion

w(xt) Z Ck(t) Ok(X)
k-i

where

r

Ck(t) - f W(X,t) ck(X)p(x)dx

* 0

Multiply (1.2) by Ok(x) p(x) and integrate over [0,r] to get

a7x t rSOat ok(X)p(x)dx f Aw(x,t)kk(X)p(X)dx
0' 0

Now since Af(x)p(x) = r(x)f "(x) + ir'(x)f '(x) (cf (3.1) and (3.2)), a simple
integration by parts shows

r r

f Aw(x,t)kk(x)p(x)dx = f w(x,t)A qk(x)p(x)dx
0 0

The relationship A k(X) = -Orkk(x) implies that

r. aw(x,t) r
f at 'kk(x)p(x) dx f - e frw (x, t )k(x)p(x) dx

Integrating both sides with respect to t over [u0 ,u] and permuting the order of
integration on the left-hand-side yields (permissible because Fubini's Theorem

which is absolutely integrable)

r o agw(X t) u tr

f 0f at' Ok(x)p(x) dt dx = f f -kw(x,t)kk(x)p(x) dx dt

o o

-21-
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Using the definition of ck(t) on the the last equation implies

U

Ck(U) + C = f -kCk(t)dt
?tO

where C is an arbitrary constant.

Therefore ck(t) = cke -k. It remains to determine the constants ck , but they
may be derived from the boundary condition w(x,O) = 1 for 0 <x < r as
follows. Since p is continuous, w(x,O) = 1 for almost all p(dx), and 1 E L 2 (p).
So

00

1 E ckeb(x) (8.1)
k-I

where

r

Ck= f k(x)p(x)dx (8.2)
0

Now Theorem 1.9 of [11] implies that the right-hand-side of (8.1) converges
pointwise to 1 on (O,r) . Therefore w(x,t) has the representation

00 
- k

w(Xt) = Z' e Ok (X) (8.3)
k-1

To prove the converse, suppose that w(x,t) is defined by (8.2) and (8.3) jointly.
Equations (3.7) and (8.2) imply that the coefficients ck , k>1 are uniformly
bounded. Hence for t > c > 0 the series converges uniformly to a function
continuous on the product [O,r] X [,o) . The uniform convergence and
boundary conditions on the eigenfunctions imply the boundary conditions on x

The integrability conditions on aw(X't) follow in similar fashion. Theat
boundary condition w(x,O) = 1 for x E (0,r) follows from Theorem 1.9 of [11]
and equation (8.1) The differential equation (1.2) may be derived from the
definition of derivatives as limits of divided differences, and the dominated
convergence theorem applied to series. QED.

It should be noted that the first passage time distribution satisfies the
regularity conditions of the theorem, and therefore must have representation
(1.2).

Convergence Of The Finite Approximations To The Infinite Vector

It will now be shown that the solution vector to system (2.1) , denoted by
p(s) = {p(*) , 1 < j n}, converges at rate n-2 component-wise to the infinite

vector p = {pj, j >1}, where pj = cjj(x).
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lS

I'

Theorem
':: Ipk',' - Pk 0o(T

Proof: Define vk.") , bk( ) and r/k") as follows:

nE,,) /I;pk where 0 < k < n-1
j-I

= Mk -- (") =  Ikpj where 0 < k < n-1 (8.4)
j-n+l

Nlh Pk - Pk(%)

Observe that {771* ) , 1 < k < n} is the solution to (2.2) where {mk , 1 < k < n}
has been replaced by {6( ' ) , 1 < k < n }. In particular

R " = ' 
6 *?)9-j(A 1,, 2, Pk-, Pk+ , / 7 (Mt - Pk) (8.5)

1<j<n l<j<n

.. 0
For I < .7 _< n

Also equations (3.2), (3.6) and (3.7) together imply that [c, [ -- O(-) , thus
n

(8.4) and (3.6) imply

Il*~) I <Cn~i

So
n<n

g,-j((6,,,p2,"" ' - , k ,' Pk+], ) ) 6k) _< gflikl 5}s)

j--1

<n-k k -fki12

Thus

* n-k-i

g. -j((P1,,2 ,PU-1 , h+I, P,, ) 2 )
j-1

Finally, the denominator of (8.5) may be written as

-23-
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H (Pj - Pk)= [L-kd n)
l<j<n

where

kd(n)  1H (Pj -1 k) H (1--)
1< j < k-1 k+1 < j < n #k

Now equation (3.6) and the Weierstrass Product Convergence test jointly imply

that

lim d (n) = d >0.
n --*0 

"

Thus setting k = ko yields r?1(" -- 0 as claimed.

A Conjecture

It is interesting to note that pk(x) is linearly proportional to the

eigenfunction 1 k(x), and therefore APk(X) = CekPk(x). This suggests that p *)(x)

will approximately satisfy this relation. Observe that Amk(x) = -mk-l(X).

Thus

Apk,(x) -m-g,,_j_(pi,,2, Pk-,,,I,,k+ ,, An) / H ( Ak -. k)
l< j n-1 Il<.j <n

Comparing this with (2.3) suggests that

lim gn-j-1((,,P , * ,P,- , Pk+1, 'Pn) I _

n .o gn-j(l",, " ,Pk-i , Pk+1, P.) ) kk

Proposition

For 1 x <2

I loq(x) - x + i1 = (x-1)2g(x)/2 where I g(x) I < 1

Proof: The mean value theorem applied to logx) at x=1 gives:

log(x) = log(1+x-1) =log(1) + (x-1) - (x-1) /2(l +Ce(x-1) - 2)

where 0 < a < 1. The prop now follows from x > and ce >0.
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